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GEOMAGNETIC DYNAMOS

By A. HERZENBERG
CERN, Theoretical Study Division, Copenhagen

(Communicated by Sir Edward Bullard, F.R.S.— Received 5 November 1957)
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EE The ‘dynamo theory’ ascribes the origin of the earth’s magnetic field to the dynamo action of

motions in the conducting fluid of the earth’s core. This paper supports the theory by proving
rigorously that it is possible to postulate a pattern of motions in a sphere filled with conducting
fluid in such a way that the arrangement acts as a dynamo producing a magnetic field extending
outside the conductor. The equations of motion of the fluid are ignored.

The proof is given for a model consisting of two eddies in the earth’s core, and does no more
than demonstrate that motions in a sphere filled with conducting fluid can act as a steady dynamo.
It is certainly not suggested that the motions in the earth’s core are so simple.

There is nothing pathological about the relative orientations of the angular velocity vectors of
the two eddies which lead to dynamo action; in fact about half of the possible relative orientations
work.

1. INTRODUCGTION

/ \

__i d Larmor (1919) suggested that the earth’s magnetic field might have its origin in the dynamo
< S~ action of motions in the conducting fluid of the earth’s core. A considerable literature has
S = grown up around Larmor’s suggestion (reviews have been published by Elsasser 1950, 1953,
= 1956a,b; Cowling 1953, 1957; Inglis 1955; Jacobs 1956; Runcorn 1956; Hide 1956), but so
= O far it has not been shown that motions in a sphere filled with conducting fluid can act as a
E 8 dynamo producing a magnetic field which extends outside the conductor. The purpose of

this paper is the limited one of showing that dynamo action is possible if the velocity pattern
is postulated without regard to the equations of fluid motion. The principal difference from
previous work with the same object is that the proof given here is rigorous, whereas the
previous work (Takeuchi & Shimazu 1953; Bullard & Gellmann 1954) used series expan-
sions which had to be cut off without justification.
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544 A. HERZENBERG ON

We shall consider a model consisting of a sphere filled with conducting matter.t Within
the sphere, we imagine two smaller spheres such that the distance between their centres
exceeds the sum of their radii. The conducting matter filling up the interior of each small
sphere rotates as a rigid body at a constant angular velocity about a fixed axis. The con-
ductor outside the small spheres is stationary. The two small spheres will be referred to as 4
and B. The model acts as a dynamo in which 4 rotates in a magnetic field arising from
induction in B, the magnetic field applied to B being due to induction in 4. In other words,
the two spheres feed one another.

This model is adequate to demonstrate the possibility of a dynamo due to motions in a
conducting sphere, but no more. It is extremely unlikely that the motions in the earth’s
core are so simple. Indeed, there is indirect evidence (Bullard, Freedman, Gellman &
Nixon 1950) for an angular velocity gradient, possibly due to the effect of the conservation
of angular momentum on convective motions. Such a gradient might be important in a
terrestrial dynamo (Bullard & Gellmann 1954; Bullard et al. 1950; see however §11), but
our model makes no use of it. If one wants a physical picture, then one can look on the two
spheres in our model as convection cells, or eddies, but this point of view will not be developed.

All we shall do to show that our model is not irrelevant from the point of view of physics
is to prove that the relative orientations of the axes of rotation of the two spheres required
for dynamo action are in no way improbable (in fact about half the possible relative orienta-
tions work), and that when the dimensions are of the order of the earth’s core, the velocities
which the model requires are larger by about an order of magnitude than the velocity at
which the non-dipole part of the earth’s magnetic field drifts westward at the surface of the
core (Bullard et al. 1950).

The plan of the paper is as follows. An outline of the analysis is given in §2. In §§ 3-6 it
is shown that the question of whether our model can act as a dynamo can be reduced to the
problem of the existence of the solution of a system of linear simultaneous equations with an
infinite number of variables. The proof that a solution can exist is given in §§7 and 8, and
the proof that the corresponding magnetic field extends outside the conductor in §9. The
velocities required for dynamo action are estimated in § 10. A general discussion is given
in §11, and the conclusions are stated in § 12.

Much of the paper may be omitted on a first reading. The essential points of the argument
will be covered by reading § 2, § 3 down to equation (3-6), and §§ 6, 8, 11 and 12. The reader
will have no difficulty in finding the definitions of the symbols used there in the missed
sections.

2. CONDITIONS FOR THE EXISTENCE OF A DYNAMO

We shall consider the arrangement shown in figure 1. It consists of a rigid sphere of
conductivity ¢ and radius M surrounded by insulating material. Embedded in this sphere
are two small rigid spheres 4 and B, which also have conductivity ¢, and which are in perfect
electric contact with their surroundings over the whole of their surfaces; their radius is a.

The large sphere is stationary in the laboratory system of reference (which we suppose
to be inertial). The small spheres 4 and B rotate at constant angular velocities w , and w
about axes passing through their respective centres. We shall assume that |w, | = |w, | = o,

T A greatly shortened and simplified account of the argument of this paper will be published in Annales
de Géophysique.
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GEOMAGNETIC DYNAMOS 545

but this restriction is of no importance because we shall see that only the product |w, | | @, |
plays an essential role.

The centres of 4 and B are at R, and R, respectively, the origin being taken at O, the
centre of the large sphere. The position of any point is denoted either with respect to the
origin by r, or with respect to R, or R; by r, or r;. The vector pointing from R, to R is
denoted by R;i.e. R=—R,+Ry;=+r,—r,.

Ficure 1. For r< M, o = constant +0; for r> M, o = 0.

We shall suppose that everything is time independent. The field equations are

curlH=J, (2-1)
curl E = 0, (2-2)
divH = 0, (2-3)
divE = ¢c2. (2-4)

The symbols H and E are to denote the magnetic and electric field vectors as they appear in
the laboratory system. J is the current density, and ¢ the density of electric charge. We are
using rationalized e.m.u. ¢ is the velocity of light iz vacuo. The permeability and dielectric
constant have been taken to be equal to unity.

J is given by ~

J=0 in r>M, (2-54)
=oE in <M, but outside 4 and B, (2-5b)
and =0o(E+vaH) inside 4 and B, (2-5¢)

where v is the local velocity of matter as seen in the laboratory. The expression (2-5¢) for
the current density inside the rotating spheres has been computed by the use of Lorentz
transformations, neglecting a convection current density ¢v and terms of order »?/c2.

At the surfaces of 4 and B, the vector H and the tangential components of the vector E
are continuous. These boundary conditions follow from (2-1) to (2-5) in the usual way.
The same conditions hold at the surface r = M, and in addition the normal component of
J has to vanish on the inside if there is to be no surface charge density varying with time.

68-2
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546 A. HERZENBERG ON

The problem to be discussed is whether it is possible to dispose of w ,, w, a, R, R, R and
M in such a way that equations (2-1) to (2-5) and the boundary conditions can be satisfied
by non-vanishing fields E and H which vanish as >0, and for which H=0 at some points
in r> M. Arrangements which permit of such solutions will be called dynamos.

We shall now formulate the conditions for our model to act as a dynamo. Let us
suppose that spheres 4 and B have applied to them electromagnetic fields («/) and (%),
respectively; these symbols denote both the electric and magnetic components. The
fields («7) and (#) will eventually be generated by the arrangement in figure 1 itself;
for the moment we just take them to be given; they are to satisfy the field equations
in stationary conducting matter, i.e. they are to satisfy equations (2-1) to (2-4) with
the current density (2-55), and are to have zero charge density within 4 and B,
respectively. What happens now is best followed with the diagram in figure 2. Since
the expression for J inside 4 is not (2:55) but (2-5¢), we have, in order to construct
solutions of the field equations in 4, to add an induced field (A’), which will have to extend
outside 4 in order to satisfy the boundary conditions at 4’s surface. We shall suppose (4’)
to be computed as if the conductor outside 4 extended to infinity and were everywhere
stationary. The field (4’) will be completely determined by (/) ; we shall write this func-
tional dependence formally (4') = (4) [«]. (2-64)
Similarly, induction in B gives an induced field (B’) which is completely determined by (%).
We denote this relationship by writing

(B') = (B) [2]. (2-60)

inductionin A (4) surface reflection

A (RA)

? W(RB’)
Ficure 2

In order to satisfy the boundary conditions at 7 = M, we have now to add reflected fields
(RA’) and (RB’) which we construct so as to satisfy (2-1) to (2-4) with J given by (2-5)
everywhere in r<<AM; i.e. in constructing (R4’) and (RB’) we ignore the rotations of 4
and B.

The arrangement in figure 1 acts as a dynamo if we can arrange the parameters so that
(o) = (B)+(RA') + (RB') (2-6¢)
and (#) = (A")+ (RA")+ (RB’) (2-6d)
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GEOMAGNETIC DYNAMOS 547

at Aand B, respectively, i.e. if equations (2-6) have a solution. The initial fields «/ and # are
then generated by our arrangement j acting in a self-consistent way. The analysis of these
equations is the main problem of this paper. The essential point on which the analysis is based
is that the axially symmetric componentsof («/) and (%) are twisted to giveinduced magnetic
fields which are proportional to v, and wp, respectively, while the induced field due to the
remainder of () and (#) is comparatively negligible when w, and wyare large. (See§4.) The
analysis is further simplified by picking out from the axially symmetric component of the
induced fields those parts which fall off most slowly with distance from their respective
rotator. Dynamo action occurs when the amplification due to the twisting of the field by
each rotator just compensates for the decrease of (4') and (B’) due to the distance between the
rotators. [The condition for this to occur is given by (10-2) for a special orientation of the
angular velocity vectors; (in (10-2), =2a/R).] The mathematical problem consists of
deriving the condition for dynamo action, and of showing that one is justified in neglecting
the components of (4’) and (B’) which either are not axially symmetric at their respective
rotators, or if axially symmetric, fall off more rapidly with distance than the parts pre-
dominantly responsible for dynamo action. For this purpose one makes a < R. It will also
be shown that the effect of the conductor surface becomes negligible if one chooses
IR, |, | Ry | <M.

The analysis of equations (2:6) will be taken up in § 6 after some preliminaries which
will occupy the next three sections.

3. SOLUTIONS OF THE FIELD EQUATIONS IN STATIONARY MATTER

In order to analyze equations (2-6), we shall need formulae for the fields (4'), (B’),
(R4') and (RB'). It will be convenient to express these in terms of a complete set of solu-
tions of equations (2-1) to (2-4), with J given by (2:54).

From (2-2), it follows that E = Vy, where y is some scalar function. From (2-1) and
(2:5b) we have divE = 0, so that V2y = 0. If we introduce spherical polar co-ordinates
(r,0,1), then we can write x = d(r¢)/dr, with V2 = 0. (2:1) and (2-3) are then satisfied
by H = oV{ A r, as one can check by differentiating and using V2§ = 0. One set of solutions
of the field equations is therefore

H,=0oVy{nar, (3-1a)
E, =V 2 (), (3:10)
V2 — 0. (3-1¢)

"This mode of writing the electric field excludes the field E = V(1/r), but such a field would
have to be excluded in any case because it violates (2-1) and (2-55); (integrate the normal
component of (2:1) over a closed surface enclosing the origin).

The remaining solutions must be of the form E = 0, curlH = 0, or

H, = oIVy, : (3-24)
E =0, ' (3-25)
VI =0, (3-2¢)

where / has the dimensions of a length ; the factor ¢/ in (3:2a) is convenient for dimensional
reasons.
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548 A. HERZENBERG ON
The functions ¥ will be written in the form
-n—1
Eunlrs 05 2) = (2) Tunl0s 20, Eunrn 0 W)= (2) " (0,0, (33)

where m and z are integers (m<n, n>>0), and ¥,,, are the orthonormal spherical harmonics
defined by Blatt & Weisskopf (1952, p. 782). The functions (3-3) form a complete set of
solutions of Laplace’s equation. The definitions of ¢; and (7;,6;,4;), and the labels £ and X
(to be introduced in the next paragraph) will depend on the co-ordinate system in use in
a way to be defined later.

The fields derived from (8-3) by the rules (3-1) and (3-2) will be denoted by the following

symbolst : (X Trnm) =collective label for (XTnm; H)=0V{, At

34

and (XTm; E) = <m} (4
(X' Tnm) = collective label for (X’ Tum; H) = avgnm
340
and (X' Tnm; E)=V (r Erm) 3 } (8:40)
(XSnm) = collective label for (XSnm; H) =0q, vgnm, 340
and (XSnm; E)=0; (34
(X’ Snm) = collective label for (X'Snm; H) =04,VE,,, (3-4d)
and (X'Snm; E)=0.

The field functions given in (8-4) are very similar to the field functions defined by Bullard
(1949, table 2). H; and Hy are proportional to the toroidal and poloidal magnetic fields
defined by Bullard. The associated electric fields are denoted by Bullard by E¢ (poloidal)
and E . (toroidal), respectively. In this paper, the magnetic fields will play the predominant
role, and we therefore denote the electric fields by the suffix of the magnetic field with which
they are associated, i.e. in our notation the association is (Hy, E;) and (Hg, E), instead of
(H, E) and (Hg, E;) as with Bullard.

The exact relations between Bullard’s field functions and ours is as follows (Bullard’s
fields are denoted by a subscript B; unprimed functions (3-44) and (3-4¢) increase with
distance from the origin, while primed functions (3-456) and (3-4d) decrease):

(XTom; H), = —~ 2::[(;’*”’”);2) ,] (X Thm; H), (354)
(X' Tom; H),, = 1[ (2::’_(;2)7” m ,] (X' Tm; H), (3-55)
(XSnm; H), = [(2:;’_(;2)*”1) ] (XS ), (3-50)
(X'Snm; H), — (231(;2;62’”) m)] (X'Snm; H). (3-54)

The relations for the electric fields follow immediately from those for the associated mag-
netic ones. Note that Bullard used unrationalized e.m.u. and denoted the conductivity
by «, so that (4mk) appears in his formulae instead of ¢ in ours.

+ The notation (...; H) and (...; E) will be used to denote magnetic and electric fields of particular kinds.
The dots indicate the labels specifying the character of the field.


http://rsta.royalsocietypublishing.org/

L

Y |

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

%

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

GEOMAGNETIC DYNAMOS 549

We shall need the solutions (3-4) for the cases where the origin is taken at O, R, or R,
(see figure 1). In the first case (origin at O), the axes may be chosen arbitrarily; the polar
angles will be denoted by ¢ and A. In the second and third cases (origin at R, or Ry), the
z-axes will be taken along w, and w, respectively, and the polar angles will be denoted by
(04,14) and (05, A5); the directions 1, = 0 and A5 = 0 may be chosen arbitrarily. Solutions
of the form (3-4) for the three co-ordinate systems will be written by making the substitu-
tions specified in table 1. As an example, the magnetic field H, which has the origin at R,
the angular integers # and m, and which increases with 7, will be written

(ATwm; H)=0Va, ar, where a, (%) Y, (0,1,)-

TABLE 1. NOTATION FOR THE FIELD FUNCTIONS

symbol in (3-4) X £ (s 015 Ay) a;
symbol for origin at R, | o (74 045 Ay) a
symbol for origin at R, B B (75, O3, Ag) . a
symbol for origin at O o 0% (r, 6, A) M

In the course of the analysis of (2-6) it will be necessary to expand the fields () and (#)
in terms of the functions (3-4). We next derive the necessary formulae. In the neighbourhood
of sphere A, the completeness of the functions (3-4) permits us to write :

=3 3 (AS”’") (ASnm)+(A3m) (ATnm)],‘ (3-6)

n=1 m=—n

ASnm) and (ATnm

o o ) are coefficients which we have to determine.

Only unprimed functions appear in (3:6) because (&) is regular at 7, = 0. The notation
ASnm) and (A Tnm

used for the coefficients ( o7 of ) requires some comment, especially because

similar two-line symbols will be introduced at a number of other places later. It is con-
venient to think of the field («7) as a cause, which gives rise to the ¢ffects (ASnm) and (4 Tnm);

in the coefficient (A § (?;Tnm

and the effect in the upper. The two sides of equation (3:6) are no more than different repre-
sentations of the same thing, so that to speak of cause and effect is merely a matter of con-
venience, because no physical mechanism is involved by which one gives rise to the other.
A physical mechanism will appear later, when we come to use a similar notation in §4 to
describe the induction in a rotating sphere; the effect (in the upper line) will arise from the
cause (in the lower line) through the induction process.

where the quantities (

) describing this process, the cause appears in the lower line,

We can determine the coefficients (Ai;zm) in (3-6) by noting that according to (3-4) and

table 1, the magnetic component (< ; H).T, comes entirely from (ASnm). Therefore, we
have from (3-3), (3-4c¢), (3-6) and table 1,

(SH) =3 3 (B0) onT, (0,0,

n=1 m=-n

s0 that (“5") = o AT M) (S5 B 2 (37)

where dQ,=sin§,df,dA, and where a * denotes the complex conjugate.
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550 A. HERZENBERG ON

The coefficients (A Yd:nm) in (8-6) can be determined by noting ((3-4), table 1) that

the electric field comes entirely from (A7Tnm). Therefore we have from (3-3), (3-4a),
table 1 and (3-6)

(#3B).8,= 3 3 (4T "ty (0,0,

n=1 m=-n

so that (A Tn

Mm) B n(_nt‘li‘—l) JdQAK'?”(ﬁA’ ) {(M’ E) ’f‘A}rA=a’ (3-8)

Occasionally we shall have to express not the whole of (), but only some part in a series
of the form (3-6). In particular, this will be necessary for components of the form (B'Snm)
and (B’ Tnm). We shall next derive the relevant formulae.

We shall begin by deriving expansions for the functions f,,, defined by (3:3) and table 1.
Since the functions «,, are a complete set of regular solutions of Laplace’s equation, we
may write, o

;o an'm’ )
bin= 3 5 (Gam) o (39)
An expansion of the form (3-9) exists only when 7, <R, i.e. where £, is regular.

We shall consider first the special case where the axes of the co-ordinate systems
(r4504524) and (g, 05, A) are parallel; the axes ¢, = 0, 0, = 0 will be assumed to lie along
the direction +R, and the planes 4, = 0 and 1, = 0 will be taken to be parallel. All quan-
tities referred to these special co-ordinate systems will be distinguished by a suffix ||, i.e. we
write in place of (3-9)

' - m an'm’ .
ﬂnmll — nzl m'g—-n'( ﬂlnm) %l (3 10)

To determine the coefficients (: : *); in (3:10), we express a,,,,-; and £, in the form given

in (3-3) and table 1, and write out

2n+1 (n— m)':l

L0, = (=) 2= 0 | Banlcos 0) e, (3:11)

where P, is the associated Legendre polynomial as defined in Jahnke & Emde (1945, p.110).
From (3:11) and our special choice of co-ordinate system, it follows that (:::);+0 only if
m = m’; we can therefore drop a factor exp (imd) from both sides in (3-10), and let »’ run
from m to co. We next expand P,, as P,,(cosf) = constant x sin"f[1+ O(sin%26)], and
combine the factors sin™ (0, 0,) with factors (77, 7%) to give each term in (3-10) a factor
pm = (r4sinf,)™ = (rgsin )™, where p is the perpendicular distance from the straight line
passing through R, and R. Wethen cancel the factorsp™, and put 6, = 6, = 7. The resultant
equation contains only 7, and 7, and refers only to points on the straight line R, —Rj.
Therefore we can put 7, = R-+r,, after which we expand the left-hand side in powers of
r,, and equate coeflicients of equal powers. We then find

() = o (3 B st ]

if m=m,
=0 if m=E=m.
(3'12)
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GEOMAGNETIC DYNAMOS 551
By a similar argument, one finds
n'm’ -t i
(a,nm)” — (—1)m (ﬁ’nm)” , | (313)

We now drop the restriction to parallel axes of the two co-ordinate systems used in (3:10).
Let us suppose that the actual co-ordinate systems (r,,0,,4,) and (7 05 4;) have axes
which areobtained from the ‘parallel’ systems by rotations with Eulerian angles (0,, A,,'¥’,)
and (0, Ay, V), respectively; these two rotations will be denoted by T, and 7. Then we
can write (Wigner 1931)

Kgm(ﬁA’)‘ ) z gn mm’ ( A) Ynm’(ﬂAH’/IAH)a

m'=-—n

(3-144)
Ynm(ﬁB’ AB) z gn mm’ (:rB) Ynm’(ﬂBll’ )*BH)>

m'=-n

so that Cpm = ,g_ gn,mm'(n) -] ﬂnm =m'§_n9n,mm’(7;) ﬂnm'll; (3'14b)
These equations are still valid if we replace the « by o’ and the £ by f'.
Since the Y, are orthonormal, the transformation coefficients satisfy the unitarity con-
ditions
z nmm( ) nmm(T) m’ (Z=AOI‘B) (3'15)

By using (3-14) and (8-15), we find from (3-9) and (3-10) that
’ n'm
(o) = 3 Bpuae ) (Grm) P T2 (316

A similar equation holds if one interchanges a =4, A=B.
We are now ready to derive formulae for the expansion coefficients in the series

(B'Sum) = ngl mg_{(‘ggn”; ) (ASn'm') + (‘f}’n’;) 4 Tn’m’)} (3170)
and (B' Tom) — glm_;_ {(AS”"”')( Sn'm ')+(‘§,7;’3""') (ATim)|.  (3:175)

By writing (B'Snm) in the form (3-4d), using the expansion (3:9) and the formulae (3-7)
and (3-8), we get ‘
ASn’m’) _ (om’m’) (A Tn’m') _0 318
(B’Snm “\p'mm)> \ B'Smwm] (3-18)

(Replace () by (B'Snm) in (3.7) and (3-8).) (3-18) is valid also if one exchanges 4 with B
and o with /.
To evaluate the coeflicients in (3-171)), we note that we can write

(B T BY=Y 30 () = ¥ 51 (aPan) —TR. VB (3-194)

(B'Tnm; H) =gV, ATy = oVﬂnmA r,—oVg, . AR, (3:195)

69 Vor. 250. A.
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The coefficients (A.,Sn "
Tnm

(o#) — (B'Tnm)). The first term in (3:195) does not contribute to the integral; in the
integral arising from the second term, we express Y%,.(0,,1,) and §,,, asin (3:14), and then
use the expansion (3:10). Noting that

Ty ( Xl A R) (R A rA) ‘fonmll = R(a“nmll/a/IA) = Rimanmlla
and making use of the orthonormality of the spherical harmonics tosimplify the expressions,

one obtains . "
ASn'm’ R 2 Jfoan'm
(3 7m) == .2 7 o), Tt (T2) BT (320)

Wm”=~n
) are obtained from (3:20) by putting A=B, «=/, and multi-

) are obtained by inserting (3:194) into (3:7) (with

r, !

) BSn
The coefficients ( A Tn

plying the whole expression by (—1); (the changed sign comes from (3-19)).
The coeflicients (3-20) with m = m’ = 0 will play an important role in the later develop-
ment. To compute these, we need the coefficients &, ,,,. These can be obtained from the

addition theorem for the spherical harmonics:
417  n ’
Yol) = () 3 EEOuA)Tuluda),  (321)

m=—n

(see, for example, Blatt & Weisskopf 1952, p. 784). A similar formula holds if 4 and B are
_ interchanged. From (3-144) and (3-21), we get ' :

4 ¥
@n,Om(T;l) = (é;l_jlr——l) Yr:km(@m AA),

4 3
Trson(T3) = (o 5) Tl Op ).

with m’ <=0 will not be réquired explicitly.

(3-22)

The 2

n,m’'m

The coefficients (flli’?:?’n?z) in (3:17b) are obtained most easily from (3-194) because the
electric field is entirely of the form E,. (by 3-2b). We shall write

ATn'm’ ATn'm’ ATn'm'\

(B' Thm) N (B' Tnm)1 + (B' Tnm)2 ’ (3-23)
the two terms are to correspond respectively to the first and second terms in (3-19a). By
introducing the expansion (3-9) into the first term of (3-194), and using (3-8) (with
(«# 5 B) > V[0(r4nn) [974]), We get

ATn'm' an'm’ : |
(B’ Tmn)l - (,b"nm) ) (3-24)

The second term in (3-19a) may be written

, © ATn
“RYg, = 55 (G S )

n'=1 m'=—n"

(3-26)

because the corresponding electric field is entirely of the form E,, and the a,,, form a
complete set of regular solutions of Laplace’s equation. The coeflicients (:::), are now
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determined by introducing the expansion (3-9) on the left of (3-25), multiplying both sides
by Y. (04, 4,), and integrating over the spherical surface 7, = a, noting that

a(rAatn’m')/arA = (n' + 1) “n m

We obtain
ATn'm’ - 1 © n” an"m" . .
(B' T’nm)2 — (WD) ngl m,Zﬁn (ﬁ ' nm )fdQA Y (00 Ag) RNGppe), g (3-26)

The sum on the right of (3:26) can be simplified if we note that R.Va,., . satisfies Lap-
lace’s equation and is proportional to 7% ~1; it is therefore a sum of terms of the form
Ap_y mv With different values of m”. Therefore the integral in (3-26) vanishes unless

n" =n"+1.
By combining (3-23), (3-24) and (3-26), we get

ATn'm’\ _ (an'm’ 1 ndl o fa(n'+1)m
(3 Tum) = (Fam) 57120 (g™ ) 202 "m(”A’A)(R“""n'“m')m?a' |
3-27

The coeflicients (i’TfZ’EnY:z) can be obtained from (8-27) by exchanging A=2B and a¢=p,

and reversing the sign in front of the second term; (the change of sign comes from (3:19)).

4. INDUCTION IN A ROTATING SPHERE

To analyze equations (2-64,b), we have to know the ‘induced’ fields (4’) and (B’)
outside the rotators which accompany the ‘applied’ fields (/) and (#). The object of
this section is to treat this problem. (Induced fields outside the rotators will be defined as
being of the form (3:45) and (3-4d) (i.e. decreasing when r increases), while applied fields
are of the form (3-44) and (8-4¢) (i.e. increasing when 7 increases).)

The induced fields occur because inside the rotating spheres the current density is (2-5¢)
instead of (2:55). They can be calculated by joining solutions of the field equations with the
current density (2-5¢) inside the rotators to solutions of the form (3-4) outside.

We shall suppose (/) and (%) to be expanded as in (3-6), and consider the components
(ASnm) and (ATnm) separately. Let (IASnm) and (IATnm) be the induced fields due to
(ASnm) and (A4 Tnm), respectively. Then we can write

) A'Sn'm A'Tn'm’
(14 g,nm) -3 3 g’ @semy+ ¢ J@Tem)l. (41
w=lm'=—n"{ \ 4 nm A nm

The quantities ( W ) are expansion coefficients; we have inserted an w into them to remind
us that we are dealing with the induction process, and not merely with a change of repre-
sentation as in (3-6), (3-9) and (3-17). In the coefficients ( w ) a similar notation is used

to that introduced in (3-6); they represent the extent to which the ‘cause’ (the applied
field) in the bottom line gives rise to the ‘effect’ (the induced field) in the top line. (In the
rest of this section we shall discuss rotator 4; corresponding results for rotator B can be
obtained by replacing 4 by B in the formulae.)

69-2
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The induced fields (Z4Snm) have been worked out by Bullard (1949). From his equations,
one gets, by taking into account the relations (3-5) (0,, is the Kronecker symbol):

m=0
A'Sn'm’
R e T (4:2a)
ASnm n+1 3(ka)
™) = byt TV G2 gl
ASnm (-1 ” 2n—1 mJ,,,%(ka)
- n \[(2n+1) (0412w i glka) .
8(n+1)n’3mm'(n+ 1)[ on+3 mJn_%(ka) B (4 2b)
(the term with d,,_;), has to be omitted when zn = 1).
m=20
A'Sn'm’
w = 0; (4-3a)
ASno0
A Tn'm’ on+1 "
w = 3(n~i)n 2 1] wa2a
ASn0 n—

s 2n—|—1 n
(n+1)n on1+3 [ 2n+2)2 1]

(the term with §,_,,,. has again to be omitted when n = 1). £ is defined by
| k= —iwom. (4-4)

walc; (4-30)

(Bullard treated the case of a rotating sphere of radius b enclosed in a spherical conducting
shell of radius a. To get formulae (4-2) and (4-3), one has to put a—00, b4 in his results.)

The case of an applied field of the form (477nm) does not seem to have been treated in
the literature. To find the corresponding coefficients in (4-1), it will be necessary to derive
solutions of the field equations (2-1) to (2-4) inside the rotators, i.e. with the current
density (2-5¢).

Equations (2-2) and (2-3) are satisfied by (3-14) and (3-15) without any restrictions on .

Considering (2-1), we have v = wZ a1, in sphere 4, and VaAH = —ws(dy/dd,) r,. If
we now assume that y oc exp (imd,) we get

vaH = —imowyr,. (4-5)
Inserting this expression into (2-5¢), we find that (2-1) is satisfied provided that
V& = imowy.
One set of solutions inside 4 is therefore
HY — oVyonrr,, (4-64)
By —V 5‘-3; (r, @), (4-60)
V3@ —imowy@ = 0, Y@oc e, (4-6¢)

where superfixes o are introduced to emphasize that the solutions refer to the interior of
the rotating region. We shall see below that the remaining interior solutions are not needed.
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An interior solution (4+6) can be continued into r,>a by introducing a field (3-1) as
follows: we can make H continuous on 7, = a by putting ¥ = ¢; and we can make Ear,
continuous by putting [d(r,¥“)/0r,],,_, = [0(r4¥)[974],,~o. These boundary conditions
are satisfied if

(w) ¢
w) = 9, A on 7,=d. 4-7
yo =9 or,  or, 4 (47)
Suppose that ¥ = constant x (kr,)~tJ, 4 (kr,) ¥,,.(0,,4,); this satisfies (4-6¢) and is
regular at 7, = 0. We can satisfy (4-7) by matching thls function to

[ o) Pt

where P is to be determined ; after using some recurrence relations for the Bessel functions,

one finds that

Tusa(ha) (4-80)

J,_y(ka)’

P:

It follows from the above argument that

(A" Tn'm’'
( 0 ):3 5 Jnri(k0) (4-85)

ATwm | """ a-alka)
A'Sn'm’
and ) = 0. (4-8¢)
ATnm
By letting £— 0 in (4:85), we find
A Tu'm’
w = 0; (49a)
ATno
A'Sn'm'\
a particular case of (4-8¢) is 7 =0. (4:95)
ATno

The physical significance of (4-9) is that an axially symmetric inducing field of type (4 770)
does not give any induction effects by interaction with the motion of the rotator. This is
because such a field has no magnetic component perpendicular to the velocity of motion
(see (4+5)).

The coefficients specified in equations (4:2), (4-3), (4-8) and (4-9) have some important
properties. If m = 0, i.e. if the applied field has axial symmetry, then the induced electro-
magnetic field is proportional to w (see (4-3)) unless it vanishes (as in (4:9)). This means
that the induced magnetic field due to an applied field (4570) of given magnitude can be
made indefinitely large by raising w. The situation for n= 0 is quite different. We shall show
that the coeflicients for this case (given in (4-2) and (4-8)) are bounded as w—>oc0. This
means that no matter how large w may be, the induced magnetic field due to an applied
field with m==0 can never exceed a limit set by the magnitude of the applied field and the
radius of the rotating sphere. Particular cases of this behaviour have been discussed by
Bullard (1949) and Herzenberg & Lowes (1957).
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We now show that the coefficients in (4-2) and (4+8) are bounded. To prove this we have
to demonstrate the boundedness of [J,,3(ka)/J,_3(ka)] as a function of w.

It does not matter which root of k2 we choose, because the ratios J,3/J,_; depend only
on k2. Neither does it matter whether the coefficient of (—i) in 2 (see (4-4)) is positive or
negative, for a change of sign here (which could come from a change of sign in wm) would
send the two values of & into their complex conjugates and leave the modulus of the ratio
J,+3/J,—3 unchanged. We shall therefore suppose that ka = | (wa2om)? | exp (—}im); we
shall denote this quantity by u exp (— }in), where u is real, positive, and proportional to w®.

It will be convenient to consider not the ratios J, 3/J,_;, but instead the ratios J,,4/J,

For n =1, we have

ﬁgg = —cotz—{—%. (4-10)
By straightforward computation, one finds that for z = uexp (—%in), the modulus of this
function increases monotonically from 0 to 1 as « increases from zero to infinity, and is
therefore bounded. We shall use this result as a majorant for the ratios with n>1.

By the Mittag—Leffler theorem (for details see Jeffreys & Jeffreys 1950, p. 383), we can

.t © 14
write Joa(2) _ 3 oy (@) [T %(a(ﬁ):l (4-11)
@ el 2=

where a§is the jth zero of J,_4(z) ; the zero at z = 0is to be excluded. By using the recurrence
relation n—3%
Ju-3(2) = == Jm4(2) = Ss(2),

we can replace the numerators in the sum by (—1). Putting z = uexp (— }im), and noting
that the 4’ are real (Watson 1944, §15-25) and occur in pairs of equal magnitudes but
opposite signs, we get

ANCTS T R A

etin Ja(u e—iin) © a2 . 1

2u® (—————) 4-12

( ) b 121 ut+ af™ (412)

We now use (4-10) as a majorant for (4-12). The only fact we need for the comparison is
that 4}’ increases monotonically with z for a fixed value of j (Watson 1944, §15:22).

In the imaginary part of the expression on the right of (4:12), each term in the sum

decreases monotonically as the corresponding 4%’ increases; it follows that

(4-13a)

ei‘m Jn+%(u e—im ] [C%"’J:% ue—i:m
J%_ u C—%’Mr)

We next consider the real part of the right-hand side of (4-12). We compare each term
in (4-12) which has |4 | <u (>u) with that term in the series for n = 1 which has its | af’ |
next above (below) | a{ |; in each pair of terms, that with n>>1 is less than that with n =1,
because, for a particular value of u, the quantity (a’2/(u*-a$™)) increases with af” when
a9 <u, and decreases when a{’>u. With one possible exception, each term in the series
with n = 1 is used only once in the comparisons because the spacing of the zeros 4 is greater
than that of the a{” at all points of the real z-axis (this follows from the theorem given by
Watson 1944, § 15-83). The possible exception is a term with ¢f’~ u which may have been
used twice. If there is such a term, remove the term in (4-12) with 4§’ next to and above u

O>j[ u e‘wr
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from the comparisons and estimate it separately. It is less than the maximum of
Qua?/(a*-+u) as a function of @, i.e. less than (1/u). Such a term can occuronly ifu>| a{d | = n
and is therefore less than #~!. Finally, one gets
0<% eyhﬂ‘]n%}(u e—im) Ch"Jg ue—hn
J,_y(uwe ) Jy(wetir)
From (4-13a4,b) it follows that

e [T+ [ (52T <[5 [(‘M)]

J,_y(ue )

]+l. (4-135)

m

Liw
+727~%’(CJJ%)+ <142 +— (4-14)
3
Finally, we have from (4-14)
Jn+%(ue~hﬂ) | Jnsa J+é ( 1)2 | s
L= | ] L 1+-}. 4-15
AT 2ol B e | et I G (+15)

This completes the proof of the boundedness of the coefficients in (4-2) and (4-8).

5. THE CONDUCTOR SURFACE

In §§ 3 and 4 we prepared the way for an analysis of equations (2-6) by considering series
expansions of the electromagnetic fields, and the induction effects at the rotators. To com-
plete the preparation, we next discuss the reflected fields (R4’) and (RB’) introduced in § 2.
These fields were defined as satisfying the field equations (2-1) to (2-4) with (2-5b) in r < M;
the fields (4") + (RA4’) and (B’) 4 (RB’) are to satisfy the boundary conditions on r = M.

These boundary conditions are

H continuous, £ E continuous, t.E = 0 on the inside of the spherical surface r = M.
(5:1)

The first two boundary conditions are derived in the usual way from (2-1) to (2-5). The third
follows from (2-1) and (2-54,5) if one integrates the normal component of (2-1) over the
surface of a disk-shaped region enclosing a section of the conductor surface.

To construct (RA4'), it is convenient to expand (4’) into a series of functions (4’ Trum)
and (4'Snm), as defined in (3-4) and table 1.

The functions (4'Snm) are not associated with current (according to (3-2)), and are
therefore unaffected by the boundary of the conductor. '

To find the fields which have to be added to (4’ 7Tnm) to satisfy the boundary conditions

at r = M, we write
n

@Tim) = 55 [(hm) (cTwm)+(Gmem) ©S6m) |- (52
This expansion is possible in 7> R,, where the functions (C'T%'m’) and (C'Sn'm’) form a
complete set of solutions of the field equations (2-1) to (2-4) with (2:55).

The functions (C’Sn’'m’) are not affected by the conductor boundary. But the functions
(C’'Tn'm’) do not satisfy the field equations in 7> M and therefore lead to a reflected field.
The component T.(C'Tn'm’; E) is d%(ry,,,,)/07%; this can be compensated on r = M by
a field — (CTn'm’). The magnetic field of the sum of these two is then

oV (7;’m’ - 7nm) AT,
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which vanishes on 7 = M. The magnetic boundary condition for the field built up
starting from (C'7n'm’) is therefore satisfied if we put H=0 in r>AM. The electric
boundary condition (faE) continuous is satisfied if we introduce in r>M an irrota-
tional electric field which vanishes at infinity and joins on to the irrotational electric
field (C'Tn'm’; E) —(CTn'm’; E) at r = M. The combination of an irrotational electric
field and a vanishing magnetic field satisfies the field equations in r > M.
The reflected field corresponding to (4’ Tnm) is now
, & E (C'Ta'm
RATm) == 3 3 (4 Lo
In order to compute the induction effects of the reflected fields, we shall have to expand
the field (5-3) into a series of the form
, e BTn'm’ , BSn'm’ , )
(RATwm) ~ 5§ ( ot Tnm) (BTw'm )+( 2 A,Tnm) (BSn'm )], (5-4a)
or the same thing with B replaced by 4, or A’ by B’, or both. To evaluate the expansion
coefficients, it is convenient to introduce the expansion

) (CTm), (5:3)

© BTn'm' , BSn'm’ . )
(CTwm) = 3 5 ( CTnm) (BTw'm )+( CTnm) (BSu'm )]. (5-45)
From (5-3) and (5-46) we find that the expansion coeflicients in (5-44) are
T T |
B r. ! 0 CIT ", n B r...7
A EE (ATnm) s' ). (5:5)
RA' Tnm n"=1 m"=-—n" CTn'"m"

The computation of the coefficients in (5-5) proceeds analogously to that of the coeffi-
cients in (3-17). We start by introducing the expansions :

=3 5 (10 g (560

n'=1 m'=—n’\ & NM
d -3 ( wm ) 5-65)
an ) 1 _Z_ 2\ ynm lb)n'm" (

In the particular system of co-ordinates in which the axes §, = 0 and § = 0 lie along
+R,, and in which A, = A, we denote the coefficients in (5-64) by a suffix ||; the corre-
sponding co-ordinates will be denoted by 640, A4, 6%, A®. Similarly, we denote the coeffi-
cients in (5:65) by a suffix || in the co-ordinate system in which the axes § = 0 and 0, = 0
lie along +Rj, and in which A; = A; the corresponding co-ordinates will be denoted by

B B) AB) B
0(BII)) A%lla 0l(l )9 ’III .

By a calculation similar to that which led to (3:12), one finds

() B [T o

T ”’,3,;!]* o

if m = m’, and zero otherwise. The same formulae hold if one exchanges A=B and a=4,
prov1ded that the suffix || is suitably redefined.
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We now drop the restriction to the special co-ordinate systems used in (5-7). Let us
suppose that the actual co-ordinate systems (r,,6,,4,) and (r, §,1) have axes which are
obtained from those of the systems (r,, 04, A4) and (r, 6/, {®) by rotations with Eulerian
angles (O, AQL, ¥{) and (@YW, AW, P'W), respectively; these rotations will be denoted by
T and TO. Slmilarly, let us suppose that the actual co-ordinate systems (7, 05, A5) and
(r,0,A) have axes which are obtained from those of the co-ordinate systems (75, 0%, A%)
and (r,0(®,Af,) by rotations with Eulerian angles (0%, AP, ¥'P) and (O®, A®Y®)
respectively ; these rotations will be denoted by T and T'P, respectively.

We define transformation matrices analogous to those in (3-13) by the equations

n

Vo0 M) = 3 Do T) Yo 050, 19), (5:80)
Yon(0s) = 5 B (TU0) Xy (04, S0 (5:85)
and YonOp ) = 3 By il TH) Vo O, 00, (590)
Yon(02) = 3 By e T2) Ey (09, ). (5:9%)

These 2’s satisfy unitarity conditions like (3-15).
With the aid of the 2’s, we can write, analogously to (3-16),

y:nlml _ n ” ,y/n/m// @ .

(oc’nm) m"z-n (T )(anm )" b e (T), (5 <10a)
n/m/ _ n @ lb)nl " - ® .

(ynm) m’g—n mm(T )( )lgﬂ,mm(TB ). (5 IOb)

Expressions for the factors of the coefficients in (5-5) will now be given. Analogously to
(3-27), we find

(Cmy < () g L S (7 D) (00080000 R Py (5111)

anm N oy =—p'+1
and
BTn'm’ n'm’ 1 n'+1 n + 1
( CTnm ) - ( ynm ) +n’-|— 1 m,_En I(ﬂ( )fdQB (055 28) [Rp -V sty mlrg=ar (5°12)
Analogously to (3-20), we find ‘
BSn'm’\ iR . (B
( CTnm ) wa ,,,E,, (@nm ) i (T8) Dyt (T®). (5-13)

The formulae in (5-11), (5-12) and (5-13) are valid also if one interchanges A=B and a = .
An exact evaluation of the series (5-5) will not be necessary, and for most of the later work

we shall be able to use upper bounds which will be derived in § 7. However, in the special

case of the coefficients (Azé),;'BT%O) something more precise will be needed. To compute

70 Vor. 250. A.
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these coeflicients, we note than when M> (|R, |, | R;|), the term in the series (5-5) with
the lowest value of »” is predominant, because, as one can show from (5-11), (5-13), (5:10)
and (5-7), the terms in (5-5) contain z” only in the form of finite powers and a factor
(IR, ]| |Rp|/M?)™. (This statement can be made rigorous by the use of the sort of argu-
ment given in § 7, especially of (7-11).) The first non-vanishing term in the coefficients
A or BSn0
( RA'Tno
in (5-11), again because of (5-7). We therefore have

( BSno )__i|RB|-(i)‘4n+l
RA'Tno) na \M,

X 2 2 z m', n, Om( TSQA)) 2, f:!j m'm( T(A)) 9, :zk,Om"( Tl(iB)) gn,m’m"( T(B))

m=—n m'=—n m'=—n

) has n” = n because of (5:7), and contains no contribution from the second term

+smaller terms containing additional factors (| R, | | Ry |/M?). (5:14)

According to (3-22) and (3-11), the factor im” can be replaced by d/dAP and taken outside
the summation signs. Moreover, by using the unitarity of the 2’s and the fact that they form
a representation of the rotation group, we have

TO) = [ (T ] = [ (T ] = B TOT),  (5150)
n’m O(T(B) 1) (5.155)

(The superscripts + and —1 denote ‘Hermitian conjugate’ and ‘inverse’ respectively.)
Substituting (5-15) into (5-14), we get

nmm(

and similarly Do (TP) =

2n+1
( BSno ) _ |R; | (Ai/[) (?X‘B) .. (TP x TO-1x T® x TS-1) 5t (516)

RA"Tno na
Now the rotation (7T x TW-1 x T® x TP -1) rotates @y into &,, so that ((3-11), (3:22))
D oo TP X TO X TO® X TPH-1) = P (6. &p). (5:17)

Moreover, it follows from the definition of A® that

A A
dwg, Rprwy,

IAD ~ |R,| ° (5:18)
With the aid of (5-17) and (5-18), (5-16) becomes
BSn0 \ _ 1(a\*dP,(&,.05) Ry. (8548,) )
(RA'Tno) T Ta (M) d(é,. o) o et (5-19)

. ASno
The coeflicient ( RA'Tn O)

is obtained by replacing B by 4 in (5-19). It follows that the
Sn
RA'Tno
So far this section has been concerned with the calculation of the fields reflected at the
conductor boundary. Another aspect of the boundary with which we shall have to deal is
the calculation of the part of the magnetic component of (4") which gets out into 7> M.
This can be done by noting that the component of this field in the direction £ is just£. (4’, H),
because this component comes entirely from the terms (C’S...) in (5-2) which are not

leading term in ( 0 ) vanishes.
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affected by the boundary at » = M. Since the magnetic field in 7> M is irrotational and
vanishes as r—>00, it can bé written

H=-VY,

where ¥(r,0,) = ?;F(r 6,0) dr’ = — f (4, H)dr'. (5-20)

It is important to note that (5-20) can be used without (4’)’s being first analyzed in the
form (5-2).

6. ANALYSIS OF EQUATIONS (2-6)

After the preliminaries of the last three sections, we can now start to analyze equations

(2-6) to see whether they can have a non-vanishing solution. As a first step we expand (4')
and (B’) in the form

()= 3 3 [aunlA'Sm) + a5, (4 Tem)] (o1
(B) =3 3 [bom(BSm) by (B Tem)]. (o1

These expansions are valid in the regions 7,>a and r;> b, respectively.

We next express the functional dependence in (2:64,5) in terms of the a and b. If the field
(«) is expressed in the form (3-6), then each component (4Snm) and (47nm) gives rise to
an induced field as described by (4-1); ag,, and ag,,, respectively, are the coefficients of
(A"Snm) and (A’ Tnm) in the complete induced field; i.e. we have in place of (2-64,b)

-AS A'Snm AT A'Snm
B © o n'm' T w'm’ T . -
RN s | A B Wl | B | R
5 ASn'm’ ATn'm'
B S S
’ 1t B, nm ’ .B, nm
©  n BSn'm T BTn'm’ T .
b;nm~—n,§lm=2_n,( p ) " >+( P ) ’ . (6-25)
B BSn'm’ BTn'm’
AorBSor T n'm

oL or B ) was explained when they were

The significance of the coefficients (

introduced in (3:6). The coefficients ( v ) describe the induction in the two rotators;

they signify the extent to which the field in the top line (i.e. the effect) is induced when
there is applied the field written in the bottom line (i.e. the cause).
These equations may be rewritten in the form

A'Snm A'Snm A'Snm
a z z bS ., T T + T
snm 2w n'm W + an’m' ) )
B'Sn'm’ B Tn'm' RB' Tn'm’

A’ TSqnm l
+aTn’m’ ) ’ (6'3)
RA ' Tn'm’ }

70-2
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562 A. HERZENBERG ON

and a set of similar equations for the 4. The coeflicients ( w') in (6-3) have a meaning

resembling that of the coefficients ( o ) introduced in (4-1). They describe how the ‘cause’

(in the bottom line) applied to rotator 4 induces the ‘effect’ (in the top line). The notation
S . . . .
- means that either S or 7'is to be read throughout the equations. An w has been written

in each of the coeflicients to remind us that induction in rotator 4 intervenes as one step
in the generation of the a. There are no terms ‘

w
RA" or RB" Sn' m'
because S-type fields are not reflected at the conductor boundary (see §5).

The coefficients in (6:3) can be constructed from (2-6¢,d), (6-1), (3-17), the method of
constructing (RA4’) and (RB’) described in §5, and the induction coeflicients given in
(4-2), (4+3), (4'8) and (4+9). The result is given in table 2. ‘

The condition that our model should be able to act as a dynamo is that equations (6-3)
should have a solution for some real value of . The investigation of this question will occupy
most of the rest of this paper.

As a first step in the discussion, we need some orientation about which of the a’s and &’
are important. One way of getting such an orientation is to take into account only one pair
(&gums Bsam) OF (@gmms Drum)> and to put M = oo. The discussion need not be given in detail.
One finds that if m==0, then the only solution of (6-3) for large R is @ = b = 0, because the
saturation effect expressed in (4-15) makes it impossible for the amplification due to the
induction process to compensate for the fall-off of the induced field with R. In contrast,
one finds that for m = 0 the amplification at induction can compensate for the fall-off
with R (for the 7 fields (but notfor the S)) ; it turns out that a necessary condition for this com-
pensation is woc R3 for n = 1 or 2, while o is proportional to a higher power of R for n>2.
Values of w which satisfy this condition for » = 1 or 2 would in general be too small for n>2.

We are therefore led to the suggestion that when M and R are large, the coeflicients
Ap0s Gpogs bpro and by are of paramount importance; the following treatment will be
guided by this suggestion. Henceforth we shall call these four coefficients strong, and refer
to the other «’s and 5’s as the weak coeflicients. The physical picture which corresponds to
the predominance of the strong coefficients is that each rotator lies essentially in the other’s
axially symmetric toroidal magnetic field (see §3). The appearance of the fields which
finally result is described in § 11( f).

Corresponding to our separation of the a’s and 4’s, we shall also separate equations (6-3)
into two groups: those equations (6-3) which have one of the four strong coefficients on the
left will be called strong; the remainder will be called weak.

Our method of treatment of (6-3) will be as follows. We shall first solve the weak equations
for the weak a’s and #’s as functions of the strong. This procedure is carried through in § 7.
The resulting expressions for the weak coefficients will then be substituted into the strong
equations (see § 8) so that in place of the infinite set of equations (6-3) in an infinite number


http://rsta.royalsocietypublishing.org/

a
N A

A A

JA '\

/ y

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

V. \
AL A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

GEOMAGNETIC DYNAMOS 563

of variables, we get four equations in the four strong coefficients. The reason why this
procedure is useful lies in that we shall be able to prove that those terms in the strong
equations which stem from the weak coeflicients are negligible for large (but finite) A
and R. The question of whether a dynamo exists then turns on whether the four strong
equations have a solution.
A or B TorS n m
17
TABLE 2. COEFFICIENTS A’ or ,
orB TorS n m
RA" or RB’

(The row determines the lower line and the column the upper line. In the row (lower line) labels,
m' can take on all values, including zero. In the column (upper line) labels, m=0 unless m is explicitly
put equal to zero. Coeflicients with lower lines (RA’ or RB’ Sn'm') are zero (see §56). When n = 1, the terms

'Sn0
with £ = —1 in the first and second columns are to be dropped. There are no ) coefficients ( 2} ) because
of (4-2) and (4-3).

The table remains valid if 4 and B are interchanged everywhere )

e A'Tn0 A'Tnm  (m=+0) A'Snm

lower
line

N AS(n+k)0\ [ 4 Tn0 ASn+km A T"m Aum \ [A/Snm\
B'Tn'm Z (B,T, ’ w Z (B/T/ (B/Tl ’ w
k=x1\0 Lnm AS(n+k)0 k=1 nm’ AS(n+k)m nm 7\ ASnm
(B’Tn’m' ATwm
A" Tn0 A Tnm
5 (AS(n+k)0)( ! ) P> (AS(n+lc)m)( ’ )
k=1 A

' 1t =41 ’ rot
+( ATnm )(A'g"m '
RB Ta'm')\ 4 o

B'Sn'm 2 B'Sn'm’ [ 2 ( B'Sn'm’ w (BISI ’ w
-~ k=£1 nm J\AS(n+k)0 k=£1 nm nm 7\ ASnm

o AS(n+k)0) [ 4'Tn0 AS(n+k)ym\ [ 4 Tnm ASnm \ [A'Snm
RATwm' | 2\ ra'Tw' © N ey © ( Twm )\ &
k=1 nm J\AS(n+k)0 k=1 M I\AS(n+k)m RAT'm' ]\ ASnm

ATnwm A" Trhm
+(RA/T ’ /) @
M7\ ATnm

- 7. SOLUTION OF THE WEAK EQUATIONS

A'Snm
e ASnm
RB Tﬂ m (RBI Tn'm') (A;;m)

In this section we shall deal with the weak equations among (6-3). An exact solution of
these weak equations is not possible; it is not necessary either because all we need are proofs
that a solution exists, and that the contributions of the weak a’s and 4’s to the strong equa-
tions are negligible.
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564 A. HERZENBERG ON

To obtain these proofs we shall proceed as follows. We shall first write down a formal
successive approximation solution, assuming the strong a’s and &’s to be given. We shall
then derive upper bounds for the weak a’s and 4’s by applying mathematical induction to
this solution. The computation of upper bounds to the terms in the strong equations stem-
ming from the weak a’s and &’s is left until §8.

Before this programme can be carried through, we need upper bounds for the coeflicients
in (6-3). We derive these next. From (3-12) we get

G <t & ) ()

nln’l \R 2n' 41
because the quantity in square brackets in (3-12) has its minimum at m = 0. Now for a
given value of (n+n'), the ratio [(zn+n")!/n!n’!] has a maximum value at n = n’ = §(n+n’)
if (n+n') is even, and at n =n'+1 = L(n+n'+£1) if (n+n') is odd. Therefore we have for
(n+n') even

(n+n')!< (n4n)!  2m7 [L(n4-n'—1)]! 2rt0

IR X)) LN CER)) I (72
and for (n+n') odd
(ntn)! _ (n+n')! _ontn =l (ptn’y  [d(n4-n'—2)]) 2m
aln'l T+ - [+ D] Jr (4w +1) [Fata’ 1) T S
(7-25)
By substituting (7-2a,5) in (7-1) we get
Om'm' — 1 n+n'+11 - .
| (/)"nm}" O{[nb n ] ” }3 . . (7 3)
where the notation [z, 7"] means ‘powers of » and n”’,
| 1=24/R, ; (74)

and where we are using the O notation in the usual sense, i.e.
Sf(x) = O(g(x)) when x,<x<x,
means that there exists a positive real number ¥ independent of x (but possibly depending
on x, and x,) such that |fl<V|g| when x,<x<x.
Here, and at all other points where we use the O notation, the intervals are
n>=1, n'>1.

For the moment (7-3) is valid for #>0; this interval will have to be restricted later.

To get an upper bound for the (;,'. '. ) without the suffix ||, we have to combine (7-3)
with an upper bound for the 2’s (see (3-16)). By putting m = m’ in (3:15), we get

l2]<1. (7:5)

We now have from (8-16), (7-:3) and (7-5)

j;”n’j; = O{[n, w71}, | (76)
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(A Sor T n'm’)
B’'Snm

r, !

ASn'm
For the upper bound of ( B Tum

(ASn’m’)
B’ Tnm
TABLE 3. ORDERS OF MAGNITUDE OF THE COEFFICIENTS IN THE

FIELD EXPANSIONS (3-17), (5-2), (54b) AND (55)

(Points in the table with a diagonal stroke correspond to coefficients which are meaningless. The O symbol

The upper bounds for follow immediately from (7-6) (see (3-18)).

) we get from (8-20), (7-3) and (7-5)

= O{[n,n'] y**"'}. (7-7)

A A

OF

) ¢

S

SOCIETY

OF

and the factor [, n'] have been omitted, i.e. the order of a coefficient is O{[n, n'] X entry in the table}.
The last two lines are valid only if 2R/M <1, where R=(|R 4| +|R;|). The abbreviations are 3= (2a/R),
#=(2¢/M), {=(2R/M). The table remains valid if 4 and B are interchanged everywhere.)
upper
line BSn'm’ BTn'm' C'Tn'm’
lower
line
RB'Tnm g+l 0 0
, o o 0 if n'<n,
RA Tnm Uj + U e Iun+1€n’—n if ’>n
0if n<n', 0if n<n
CTnm wrIg i pzn’ e if ri?n’ \
A" Tnm prgln—n’1+1 Pastardiat \
A'Snm /l'”+",€| n=n’| +1 :u’"+n’+l§ |n—n’| \
ATn'm’ . .
To get an upper bound for B Tum from (3-27), we need an estimate of the integral
| appearing there. By using Schwarz’s inequality and the normalization of the ¥, , we find
2
f dQ, Y, (01 A4) (R Vs 1yme)yma| < f dOQ,(R. Vg ) (R.Vag,1),)
R? R2 )
S fr dS(Va@ snm - Vo) = g {0’ +1)2+ (@' +1) (' +2)}.  (7-8)
A=a
(The first term in (7-8) comes from the radial, and the second from the angular derivatives.)
From (3-27), (7-6) and (7-8) we find
ATn'm’ +
- ’ "+1
‘ (B/ Tnm) - 0{[”3 n ] ”n w }‘ (7.9)
Estimates for the coefficients in (5-2) and (5-45) can be obtained by similar arguments.
The results, together with those we have just obtained, are given in the first three lines of
table 3. In this table 9% oR
H=37> CEH’ (7-10a)

where R=|R,|+|Ry]|. (7-100)


http://rsta.royalsocietypublishing.org/

j A Y

Y |

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

' \

A B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

566 A. HERZENBERG ON

The computation of upper bounds for the coeflicients (A }({)21,9 o ) from (5-5) requires

the summation of an infinite series. To do this, we shall use the following lemma.:
If | ny| =1, Sy =8=0 for some Sy, and | x | < | %y | <1 for some x, then

S nSx" = O(nfx™). (7-11)
n=mng
This lemma states that the series in (7-11) has an upper bound whose form is that of the first
term ; we shall therefore call (7-11) the ‘first-term lemma’.
To prove the lemma (7-11), we have, under the conditions stated

- © N
5wl < || 3 ]| (65 |
n=ngp =0 nO
but (w—t)1<(l+Ii‘)<(l+|t|)
o o
| N
and (no H)\ < (14| ¢])%,
so that S | <[ n| |40 ] S | xh] (1+8)%.
n=ng t=0

Since | x, | <1, the series on the right converges and represents a function of S, and x, which
is independent of n,, S and «x; this proves the lemma. In our applications the condition
| 7, | =1 will be satisfied, and all powers of z that enter are finite so that S, exists. Thus the
only condition we have to watch is that on «.

We can now obtain an upper bound for the coeflicients ( Ri.’. ) ) from (5-5) by re-

..

placing the terms on the right by their moduli, substituting from the first three lines of
table 3, and applying the first-term lemma, which is valid provided that

(<<l for some {. (7-12a)

This condition is a physical restriction which is not required by the geometry of our model

(see figure 1), but arose from our method of constructing upper bounds to (A ogB h )

and ( ... ) An analogous argument gives ( Rili." ) ) The results are given in the

A'orB'...
last two lines of table 3.

We next compute upper bounds for the complete coefficients in the weak equations given
in table 2. To do this, we have to combine the upper bounds in table 3 with the induction
coefficients (4:2), (4-3), (4'8), (4'9) and (4+15) in accordance with table 2. In writing these
upper bounds, we shall assume that

0<y<y,<1 for some 7, (7-125)
and 0 pu< <1 for some . (7-12¢)

Both these conditions are consequences of the geometry of our model (see figure 1). In the

sums 3 in table 2, only the term & = -1 occurs when z = 1in the upper line of the coefficient
k=1 :
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because there is no field (4Sn=0m). For values of #n>>1, both the terms k£ = +£1 occur,
but the ratio of the term with £ = +1 to that with £ = —1 contains, except for a factor

, g s (A .. 08| nent1] -] nem—1] 3 (AOTB. ..
[n,n'], the factor #? in B , and the factor y2{! =" e n (T by . The
largest value of y2¢! »—n'+11 -In=n"-1l occurring is (#/{)? (remember {< 1), and this is

o - (o)~ Geean) - rlaow ko]
- ==X —= = =X —= = < 7-13
(0= Grze) - Rran) ~#lagmiarion) < 1)
Since #2< 1, we need take only the terms with £ = —1 when computing the orders of terms
with #2>1 in table 2.
TaBLE 4. ORDER OF COEFFICIENTS IN EQUATION (6-3)
(The symbols O and factors [n, n'] have been omitted, i.e. any particular coefficient is
O{[n, n'] X entry in the table}.
The table remains valid if 4 and B are interchanged everywhere.)
upper A'Tn0 A'Tn0 A Tnm A’ ' Tnm A'Sn0 A'Snm
line (n=1) (n>1) (m#+0,n=1) | (m+0,n>1) (m=+0)
lower
line
B' Tn'm’ wao X 771;'+2 walo X ﬂn+n’—l 7]"’+2 77n+n'—-l 0 nn+n’
B'Sn'm’ walo X nn’+3 walo X 77n+n' . ﬂn'+3 77n-l—n' 0 ﬂn+n'+l
RB'Tn'm' | wa?o x p3g? wato x =1 piaf w'=1; | prir-t 0 e
or if =1 ; X gln’—n+ll+l, Iun'+2§n'—-l X gln—n'—ll+l X gln—n’l+l
RA'Tn'm' | wa?o x yr'+2gr—1 if n'>1
if n'>1

The upper bounds of the terms in table 2, and in particular of the coefficients of the weak
equations, are given in table 4. All the entries in the first and second columns have a factor
wa’s; these factors will come to play the important role of making dynamo action possible by
compensating for the factors y which represent the fall-off of the induced fields with distance.
In the coefficients with upper line 4’ Tnm (m<0) in the third and fourth columns, the orders

A, T. .. AT
are determined as follows: in © , the second term, containing ( T ) ) is smaller‘
B'T...

than the first, containing ( 4'; ) by a factor O(32) for n>1, and can be ignored, while

AT. ..
for n =1 the two are of the same order in 7. In the coefficients ( w ), the

RA'orRB'..
second term is smaller than the first for n>>1 by at least a factor (#/{)2, which is less than 2
: , AT..
by (7-13) and can be ignored; for n = 1, the two terms in o are of the same
RA’ or RB'..

order when 7’ >1, while the first is smaller by a factor {2 for n’ = 1, when the second term
becomes predominant.

71 Vou. 250. A.
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568 A. HERZENBERG ON

With the upper bounds in table 4, we can now start on the programme outlined at the
beginning of this section for the solution of the weak equations (6-3). We repeat that all
that is required is a proof that a solution exists, and an upper bound for those terms in the
strong equations which contain weak a’s and &’s.

We start by solving the weak equations (6-3) by successive approximations, i.e. we write

Tnm z ds nm> bg.nm 2 bgnm: (7.14)

where (7,m) = (1, 0) or (2, 0) for the ar,, and b4, and where

S
T (4 T
=3 5 Lygon
T n'=1m'=—n’ @
B'Sn'm’
A'g,nm \' A';nm . A';nm
+ 6w N " +afu Y , (7'15)
B'Tn'm’ RB' Tn'm’ RA'Tn'm'

with a similar equation for the 4@. The primes on the X signs imply that the strong a’s and
b’s are excluded from the summation, except for i = 1 when only the strong and no weak
a’s and &’s appear on the right-hand side.

We now construct upper bounds for the ¢® and 49, and prove that the series (7-14) con-
verge. Let us suppose that there exist positive numbers i, ## and # such that

|aols |0 <t for n>=3, (7-164)
[P ls [ 6P | <th for m=0, (7-16b)
| @ |y |8 | <8 for n>2, m=0, (7-16¢)
| am s | O | <. (7-164)

Note that the same quantity /2 appears on the right of both equations (7-16¢) and (7-164d).t

1 The reasons for our grouping of different a’s and s under common upper bounds in (7-16) are as
follows. Let us for the moment ignore the effect of the conductor surface, i.e. put M = co. The separation of
the ay,, and by, with m =0 from the rest suggests itself because of the appearance of the amplification
factors wa?c" in columns 1 and 2 of table 4, and their absence from columns 3 and 4; no similar separation
of the ag,,, and bg,,, with m =0 is necessary because the zeros in column 5 of table 4 show that the corre-
sponding fields are not excited.

The separation of the ag,,, and by, with n =1 (m=+0) from those with n>1 (m=0) suggests itself because
the former are excited less easily than the lowest in 7 of the latter by a factor % (compare columns 3 and 4
of table 4).

Finally, we group together the ar,,, and by, with n>1 (m=0) with the ag,, and bg,, because the lowest
member of each group (z = 2 and 1, respectively) contains the same power of % both in the factor responsible
for its excitation (compare columns 4 and 6) and in the fields it produces (compare lines 1 and 2).

If we now consider the effect of a finite M, then we have to look at line 3 of table 4. If we ignore the
factors {, which by (7-12) may be as large, but no larger, than unity, then line 3 differs from line 1 only in
that the former has # where the latter has #. Since the upper bound of (x/%) is %, because

R R
R R e, )

the reflexion terms on the right of (6-3) are of the same order of importance as those not involving reflexion,
at least for low values of n. This fact suggests the grouping together of @’s and &’s under common upper
bounds.
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We next obtain a recurrence relation between the /9 and ¢-V. By replacing the terms
on the right of (7-15) by their moduli, and using (7-16), we get, for i>1,

7 T
A Tnm
| a&l) I<t(l— D z + + "
n'=3
B’ Tn 0 ' RB' Tn 0 RA'Tn’O
,nm
t(z- 1) T
g:l:l ) 0] >
B’ Tim RB’ Tlm
A § nm A § nm ! Snm
+450 3 z ( 7 ﬁ + Z:
B Tn RB' Tn'm’ RA' Tw'm
" nm ,
+ zl g f; . (7-18)

m+0 | \B'Sn'm’

The orders of the sums in (7-18) can be obtained by substituting from table 4 and applying
the first-term lemma. This calculation is simplified a little if we note that line 3 of table 4
remains valid if we replace { by unity (we then overestimate the coefficients whose orders
appear in thatline). Line 3 then differs from line 1 only in the appearance of x in place of 7,
and since g <47 (by (7-17)) it follows that the orders of the second and third terms on the
right in the first three lines of (7-18) do not exceed that of the first term in their respective
line. Therefore, when computing orders, we need consider only the first term in each line

n (7-18). One of the results obtained is

| o | = w0oa®{O([n] 7*2) 557+ O([n] 7*1) t"“’+0([n] ") #1°% ’(7'19)

a similar upper bound holds for | 5%, |-
To simplify the expression (7-19), we shall introduce a quantity y defined by

woa’y3

1

= a0 (7-20a)
and assume that there exists a lower bound y, such that :

| x[=x0>0. (7-200)

For the moment the limit y, can be taken to be a pure number independent of w, ¢, a and 7;
its magnitude will be defined in§ 8. (The factor 1/40 will be convenient in § 8.) The useful-
ness of equations (7-20a) and (7-205) is due to their allowing us to write

woa?p? = 0(1) when O<gy<l. (7-20¢)

The physical significance of the restriction (7-20¢) is as follows: we have already seen
(in § 6) that a dynamo based on the strong a’s and 4’s probably requires that v be propor-
tional to R3, or, in other words, that vy be constant as R varies, whereas dynamos based on
what we prefer to regard as weak a’s and b’s require a more rapid variation of » with R.

71-2
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570 A. HERZENBERG ON

Therefore, in introducing the restriction (7-20¢) into the discussion of the convergence of
the solution of the weak equations, we are trying to use the fact that an & which is large
enough to give regeneration through the strong a’s and &’s, will in general be too small for
the weak a’s and &’s to be of any serious importance.

To get a recurrence relation for the ¢® from (7-19), we use (7-20¢) in (7-19) and get

| & | = O([n] 7"~") 6P+ O([n] 9~2) 5+ O([n] 7~%) 1 (7-21a)
We can simplify this result by noting that if n>n,, then
H{[nl 7} | = 7o x [ {[n] 7"~} | = O([ne] ™) (7-22)

because the factor |{ }| is bounded by a number depending only on 7, (see (7:125)), n,,
and the highest index occurring in [z], but independent of # and z. If we use (7-22) in
(7-21a), then we get a common upper bound for all the af),, with n = ng, ny+1, .... Putting
ny, = 3, we may write ,

t9y = O() 85+ 0(1) 5+ 0(1) (1210)
when ‘ 0y, <.

Results, similar to (7-215) can be obtained from (7-18) for ¢ and #,. These results can
be grouped together in the matrix form

(@] < VU[-1], , (7-23)
where V is some finite positive number, while
o 7 g 1
[9]=|t]| and U=|g* 73 5%]. (7-24)
#h 7ot

The inequaiity (7-23) is our desired recurrence relation for the /9. By its construction we
have demonstrated that if there exists a set of upper bounds ¢, then there also exists a
set 1O, '

We next compute [¢V], and thereby show that all the [¢@] are finite. The weak &’s and b’s
to first approximation (i.e. a®, 4V) are obtained from (7-15) by retaining on the right only
terms containing strong a’s and #’s. Upper bounds are obtained by replacing all terms in
the sums by their moduli, substituting from table 4, and using (7:20¢) and (7-22). One finds

) n
[t(l)]E t(lec = 0|3 (lﬁTIOI+|5T10l+laT2OI+IbT20I)’ (7‘25)
g /8
_ 3\*1 3\t1
where aTloEQ(g) ;]‘aﬂo, ZTlofz(g) 7 bryo- (7-26)

The renormalization (7-26) is convenient because it avoids odd factors 7 and other numerical
factors, both in (7-25) and at other places later.

We next use (7-23) to show that the successive approximation solution (7-14) converges.
By repeated application of (7-23), we find

[10] < PE-DUE-D[D], (7-27)
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GEOMAGNETIC DYNAMOS 571
By taking moduli on both sides of (7-14), and using (7-16) and (7-:27), we have then

IaTnOI (n>3>
(@ |  (m0,1>2) or |ag, ||<3 [O]<[0]+(3 VU) (). (728)

| Arim | (m:*: O)
To compute the sum of matrix products in (7-28), we try to find a matrix 7" which has
the property T-1UT = U, (7-29)

where U, is diagonal. With the aid of T, one has, by inserting a factor 777! between
successive U’s in (7-28)
S Vii=T z Vi(T-1UT) ]T - (§ ViU;',) T-1, (7-30)
i=1 i=1
The sum can now be calculated provided that (| V| x any element of Up) <1.
A matrix T which satisfies (7-29) is

- 1 1
1 - =
1 -1 0 Z Z
T=@1+2ntg2 0 —p|, Tl=(Q+2pH-2p ~ S| (731)
3 g2 2 T "
7o n
L
s n /I
2(1+27) 0 O
which gives U,= 0 0 0]. (7-32)
0 0 0

(The columns of T are the eigenvectors of U; the rows of 7! are the eigenvectors of the
transpose of U; and the elements of U, are the eigenvalues of U.)
Using (7-32) in (7-30), we get
ppl+2g) o,
Ry A 71 (7-33)
& 0 0 0
0 0 0

_ |4 1 V
= i=vpre T S ey O

provided that Vp?(1+29) <1. (7-34)

The inequality (7-34) is the condition that the matrix sum in (7-28) should converge, and
therefore its satisfaction is a sufficient condition for the convergence of our successive
approximation solution (7-14) and (7-15).

From (7-25), (7-28), (7-33) and (7 24), we finally get the following upper bounds for the
complete weak a’s and &’s:

IaTno] (n=>3) n ~
|@rpm| (m=+0,2>2) or lasnmf = O|7? (IaT10!+|ZT101+|aT20]+] brag I), (7-35)
|ar,| (m=+0) n*

there are similar upper bounds for the 4’.
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572 A. HERZENBERG ON

The only restrictive conditions, other than those due to the geometry of the model, to
which this result is subject are (7:124) and (7-34). We should emphasize that all we know
about V'in (7-34) is that it is a finite positive number independent of all variables.

For later reference, we next prove that the weak 4’s and 4’s are continuous functions
of w. The series (7-15) for a® is uniformly convergent with respect to o, because our deriva-
tion of (7-19) from (7-18), and similar arguments for 4§, and a{),, show that Weierstrass’s
M-test can be satisfied. Therefore the a® and 4@ are continuous functions of v if the a¢
and 4¢-D are. But the a® and 5® are manifestly continuous in ; therefore the ¢® and 4 for
all 7 are continuous in w. The sums (7-14) for the complete weak a’s and 5’s converge uni-
formly with respect to w because Weierstrass’s M-test is satisfied (see (7-16), (7-27), (7:33)
and (7-34)). Therefore the weak a’s and &’s are contlnuous, because they are given by a
uniformly convergent series of continuous functions.

8. SOLUTION OF THE STRONG EQUATIONS

We next take the strong equations (6-3), and express them entirely in terms of the strong
@’s and b’s by using the formula (7-35). We then show that our model can act as a dynamo
by proving that under certain conditions these equations can have a solution for real
values of the parameters. ~

After the weak a’s and 5’s have been expressed in terms of the strong, the strong equations
(6-:3) can be written in the form '

'A" r AI "‘ o A, T o A, 1 o A, 7
[2] ={ wl|+| o |+]| o }[b]—l—«‘. o |+]| o }[a], (8-1a)
| B’'] |RB'] |WB|] |RA'} [WA']

-Bl- - B/ -‘ - Bl 7 B BI 7 B Bl I ’
[2] ={ wl|+| o |+]| o }[a]+{ o |+] o }»[b], (8:15)
(4’| |R4’] w4 RB'| |WB']

A
where (see (7-26)) [a] = Pﬂ [5]= [bm (8-2)

720

IQ;’] represents the major part of the feed
from rotator B to rotator 4; this would be present even if there were nb surface reflexion
(i.e. M->0c0) and if the weak &’s and b’s were ignored. [1;%3'} represents the feed from
B to 4 through the field RB’ reflected from the conductor surface, again ignoring the weak
s and b’s, and similarly [f}

The symbols [w} denote 2x 2 matrices.

] represents the feed of the strong @’s to themselves via
RA’'

A’ A4

surface reflexion. Finally, | w | and | o ] represent the feed from the strong 5’s
| WB’ WA’

and @’s respectively to the strong a’s through the intermediary of the weak a’s and b’s.

A B’
The matrices [a)] and [a)] can be written down from table 2. The coeflicients can
B BI ! Al
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GEOMAGNETIC DYNAMOS 573

then be expressed in terms of the parameters of the model, either in terms of the upper
bounds from table 4, or exactly by means of (3-12), (3:13), (3-20), (3-22) and (4-3). One
obtains

Y cos O, —4cos O, cos O
) ] = ={sin @, sin Oy sin A +sin @, sin @y cos Az | +0(n?) (8-3a)
Bl X —3 cos O

3 B

B1 —cos®; —4cos®, cos®,
[ v ] = )—C{sin 0O, sin Oy sin A, +sin @, sin Oy cos Az |+ 0(772)} (8-3b)
A

—1 —cos 0,
1 ‘
= {@+00r)};
. 1 woa’p? _ 2a - 7
where (as in§7) = 40 ”=F’ (8-4)
and where Ap=A,—A, , (8-5)

O(n?) denotes a 2 x 2 matrix whose elements are O(52). The angles ®,, A,, ®, and A,,
which were introduced in § 3 (before (3-14)), are the Eulerian angles of the rotations which
send &, and &, from being parallel to R = —R,+R; into their actual positions. The
matrices P and @ defined by (8-3) will be convenient later.

The matrices (8:3) are very important because they describe the major part of the inter-
action between the two rotators. (8:34) is obtained from (8-34) by exchanging (0,, A,)
with (@, Az), and some changes of sign; there is a difference of sign from (8:5), and this is
cancelled by another from (3-19) (remember that R = R;—R,); finally there is a difference
of sign from (8-13) which affects only some of the matrix elements.

A’ or B’
Of the elements of the matrices [ ) ], some can be computed to lowest order
RA"or RB’
in {from (5-:19), table 2and (4-3).1 The remainder can be given upper bounds from table 4.
Remembering that

E_(R)e_
. (2R)¢f (%),
one finds that 5= Lo ]ZI Lo (8-6)
RA'l X 77 |rB] x 77
AT 1o o |
MBS
where poz+i%RA.(&AA&B)§3,

T (5°19) actually gives the terms of lowest n” in the series in (5'5) for n=n', and S in the upper line;

by substituting in (5-5) from table 3 and applying the first-term lemma, one finds that the sum of the higher
terms in (5-5) is smaller by a factor O({2).
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574 A. HERZENBERG ON
BI
1fo o
and ) =—{|: 0 5}, 8-6
[RA,] AL oo (860
1 R? A A
where go=+ 24 7 R;. (0pr ) 3.

Equation (8-64) follows from table 4 and the remarks after (5-19). For later reference, we
note that the terms p, and ¢, in (8:64) and (8-6¢) are larger than the O terms by factors

0(2).

The terms in (8-1) containing matrices with W represent the expression

A/ A/ _2_ ?,_ 3
[ v }[bH[ PR HER
WB’ WA’ 0 1
© [ /4" T10\ | [ 14’ T10 A'T10 \ | [/ A'T10 \ |
X Z, z/ bSnm W +anm (2] +( (0] +aTnm 2] H (8.7)
n=1m=-n B’'Snm B' Tnm RB' Tnm RA Tnm

A'T20 A'T20 A'T20 A'T20
0] 7] -+ 7] )
i B'Snm B Tnm RB' Tnm RA' Tnm |

and a similar set of terms with (4, B) and (a, b) interchanged. The primes on the X signs
signify that the strong a’s and #’s are to be omitted in the summation. Upper bounds for
the series in (8-7) can be computed by using (7-35), table 4 and the first-term lemma (7-11).
One obtains (remember the renormalization (7-26))

AI A/ .
1 -
[ g [b]+[ o |[a] = -0 (|0 |+|bri0 |+ @re0 |+ bra0 |)- (8-8)
WB’ wA' X
Since all the equations (6:3) are linear, we can drop the modulus signs in (8-8) and write
41 B1 .
v | ==0(»? and o | ==0(?; (8-9a)
wp'| X w4 X
by using the restriction (7-20¢) on y, we get also
4’ B’
w ] = 0(n?) and o |= 0(?). (8-95)
wA’ WB'

It is convenient to rewrite (8-1) in another form. If we substitute (8:3), (8:6) and (8-9)
into (8-1), we get

[a] = = (P+p) [2], (8:104)

52 [

(5] =§C(Q+q) [d], (8-105)
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GEOMAGNETIC DYNAMOS 575
where P and @ are the matrices defined in (8-3), and
r=[, o]ro@+ou, (8110
o O
_[0 O 5 2 .
0=, o]+oE+ow. (8-110)

To throw (8-1) into the form (8-10), it was necessary to take the terms

A A B’ B’
bl = (L)L
RA’ w4’ RB’ wBhB’

in (8:1) over to the left-hand side, and multiply through by the inverse of the resulting
matrix on the left. (According to (8-6) and (8-95), it is possible to choose 7, and {; so that
the inverse exists when 7 <#, and {<{;.) The new terms appearing on the right as a result
of the multiplication are absorbed in the O terms in (8-11).

The condition for our model to be able to act as a dynamo is that the equations (8:10)
should have a solution. We next consider the conditions for this to be so. By substituting
(8-10b) into (8-10a), we get

[ 1= 5P+ (@+9) [ =0, (12)

where I is the unit matrix. Equations (8-10) will have a non-trivial solution if (8-12) has,
and the condition for this is that

det [}2I— (P+1) (Q+9)] = 0. (8:13)
The matrix (P+p) (Q+¢) is found from (8-3) and (8-11) to be
X2+Pugo+0(0) (S
P—l—P (Q+q) = ’i ’ 8-14
D = b0 vrrQupro@l
where y'2=1(sin O, sin Oy sin A ;)% [cos O, cos Oy —sin O, sin O cos A 5], (8-15)

and where F; and ),; are the elements of P and . In writing (8-14), we have put
7= 0(LY). (8-16)

This has the effect of incorporating all terms in (8-12) depending explicitly on 7 in the
O({®) terms in (8-14) ; since these are smaller than the terms containing p, and ¢, by a factor
0(£?), (8:16) means that we are choosing the parameters so as to make the interaction with
the conductor surface predominant among the small effects. With. the aid of (8:14), the
condition (8-13) for dynamo action becomes

=12 —Prago+ O()] [X2—X"2— Quatro+ O(L) 1+ O(E?) = 0. (8:17)

Before discussing this equation, we shall prove that the left-hand side is a real and con-
tinuous function of @ when w is real. y* is manifestly real and continuous (see (8-4)). The
other terms in (8:17) are also real and continuous because the matrices in (8-1) are. That
these matrices are real can be seen as follows: a real electromagnetic field always produces
real fields by induction in a rotator or reflexion at the conductor surface (if y is real). Now
if @ryg, @rggs brio and bpy, are real, then the fields @p4(A' T10), azy (A’ T20), bpo(B' T10)

72 Vor. 250. A.
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576 A. HERZENBERG ON

and b4, (B’ T20) are also real, so that the part of the electromagnetic field which is described
by the weak a’s and &’s is real, and can induce only real contributions to g, @z, O710
and byy,. It follows that the matrices in (8-1) containing W are real. The other matrices
in (8:1) can also be shown to be real, either by similar arguments, or by inspection. The
continuity of the matrices P, @, p and ¢ is proved by noting that those matrices in (81)
which do not contain W are continuous functions of y, which they contain only as a factor
x~!. Those matrices which do contain W are also continuous because the series (8-7) which
defines them is uniformly convergent with respect to w—for our method of computing the
upper bound (8-8) shows that Weierstrass’ M-test can be satisfied—and because of the
continuity of the weak a’s and 4’s which was proved at the end of § 7.

We can now discuss the dynamo condition (8:17). Let us see first what happens if we
ignore the detailed structure of the terms containing ¢, and rewrite (8-17) in the form

(x*—x"%)?+0(&) = o. (8:18)

Since y2> 0 when o is real, it follows that a necessary condition for (8-18) to have a solution
for a real value of v is | ¥2>0 ‘ (8-19q)
if { is small. This condition is, however, not sufficient because the term (y*—x’2)2 in (8-18)
is positive definite, so that it becomes essential to consider the detailed structure of the O
term. This means that terms in (8:1) which become vanishingly small as y—0 and {—0
are, nevertheless, of decisive importance for whether dynamo action is possible or not. We
therefore return to the dynamo condition as written in (8:17). The term [...][...] will
vary approximately parabolically with x? if { is small, and will have two distinct zeros if

Pygy— Q120+ 0,
or —sin @, sin @, sin A ;,(sin O, sin O, cos A,z —4 cos O, cos Op)
X ﬂﬁéa(RA +Rp). (wawp) 0. (8195)
When 2 lies between the two zeros, the term [...][...] is negative and its magnitude
reaches a maximum value of oc {®; when 2 lies outside the two zeros, the term [...][...]

is positive and unbounded. Since everything in (8:17) is real and continuous, and since the
second term in (8-17) is O({?), it follows that when { is small, equation (8:17) has two roots

X2 =X+ 0(8); (8-20)

it also follows that the conditions (8-19) are sufficient for the strong equations to have a
solution.

We should note that ¢ (and also ) has to be small, not only to satisfy (8:17) but also to
satisfy the conditions (7-12a), (7-34), and <<z, {<{, (after (8:11)). Our calculations
are not precise enough to give upper bounds below which 7 and { must lie; however, we
know that such upper bounds exist and are non-zero, so that it is nof necessary to go to the
limit #— 0, {0 for our conclusion that our model can act as a dynamo to be valid.

Since the discussion leading up to (8:20) made use of the results of § 7, it is necessary that
| x | should exceed an arbitrarily chosen non-zero lower bound y, (see (7-205)). This can
be arranged by choosing 0<y,<|x" |-
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We should note that since w=|w, | = | w, |, x is positive by definition, and therefore only
the positive value y obtained from (8:20) has any significance.

The demonstration that the strong equations can have a solution completes our proof
that steady dynamos are possible in principle.

9. THE MAGNETIC FIELD OUTSIDE THE CONDUGTOR

To be of interest, a dynamo mechanism must not only be able to maintain its electro-
magnetic field, but must also produce a magnetic field outside the conducting material.
In this section, we shall prove that our mechanism can do this.

The part of the magnetic field in > M (in terms of figure 1) which falls off least rapidly
with 7 is the dipole component which decreases as 7~3. It will be sufficient to show that this
component is non-zero. This can be done by calculating the external magnetic field arising
from (A') + (B’) in the way described at the end of § 5.

The only components of (4) and (B’) which contribute to the dipole field are
(4"or B’ S1m) and (4’ or B’ T1m). (The reason why a toroidal field with z = 1 makes a
contribution varying as 7~3 and not as 7~ is its transverse nature, since

(A" Tnm; H) = gVa,,AT,;

the vector (4'Tnm; H) has a magnitude proportional to r—*~1; but its projection on T,
which determines the magnitude of the contribution outside the conductor, falls off more
rapidly by another factor 7.) From our equations (7-35) and (7-26), we see that the coefli-
cients of the field (4" or B’ Sor T 1m) with m==0 are smaller than those of the fields with
m = 0 by several powers of 7; we need, therefore, consider only the fields (4'710) and
(B’ T10). To avoid a discussion of the interference of these two fields, we shall suppose that
the rotator B is concentric with the conducting shell. The discussion of §5 then shows
that (B’T10) gives no magnetic field in > M; we shall therefore have proved that our
dynamo can produce an external magnetic field if we can show that the coeflicient a,,
of (4’ T10) is not zero.
If we put ¥2 = ¥"2+ ¢, P, + O({%) in (8-12), and use (8-14), then we find that

aryg _ Piago—Quato+0(8%) (9-1)
ary  FParqo+ Qe+ O(8%)

The numerator of this expression, and therefore dr,,, is non-zero if the condition (8-190)
is satisfied. This means that the conditions which make a dynamo possible are also sufficient
to give a magnetic field outside the conductor.

10. PHYSICAL SIGNIFICANCE OF THE MODEL

A complete discussion of the physical significance of our dynamo model is clearly im-
possible because the velocity distribution of the conducting fluid has been postulated,
instead of being derived from the equations of motion. However, it does seem worth while
to discuss the following two questions:

(1) How probable or improbable are the relative orientations of the axes of the two
rotators which give dynamo action?

72-2
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(2) How do the velocities required by the model for dynamo action compare with our
empirical knowledge of velocities in the earth’s core?

To answer the first question, we recall from § 8 ((8-15) and (8:194)) that when 7 and { are
small, the condition for dynamo action to be possible is

cos ©, cos @ —sin @, sin O, cos A ;> 0. (10-1)

(For the moment, we shall ignore the condition (8:194) and the possibility of the vanishing
of the factor (...)21in (8-15).) Itis easily shown thatif (10-1) is not satisfied for a particular
relative orientation of &, and &, then it will be satisfied if either one of & , or &, is reversed.
Conversely, if (10-1) is satisfied, then a reversal of either &, or &, will violate it. The proof
of these statements is that the left-hand side of (10-1) changes sign if we replace (0, A,)
by [(7—©,), (m+ A)] or (8, A,) by [(1—8,), (+A,)]; (remember that A, — A,— A,).
It follows that precisely half the possible relative orientations of @, and &, lead to dynamo
action if |w, | and | wy | are suitably adjusted. This conclusion is not affected by the con-
dition (8:194) and the condition that the factor (...)2in (8-15) should not vanish, require-
ments which we have ignored up till now. The reason for this is that the relative orientations
of &, and ®, which violate these conditions form only a very small fraction of all those
possible.

- We should add that the condition (10-1) on which the discussion of the preceding para-
graph was based is not exact because the terms Py, ¢, and @,,p, in (8:17) were omitted. If
these terms are taken into account, then it remains true to say that roughly one-half of the
possible relative orientations constitute dynamos if 7 and { are small.

We next consider the velocities required by our model for dynamo action. The peripheral
velocity wa of the rotators can be found from (8-4), (8:15) and (8:20). To get a typical
value, we shall take ®, = @, = 17 and A, = 47. One then finds that

: 1 :
wa = 40J24W, (10-2)

when 7 and { are small. To get an estimate of some practical significance, we shall ignore
the restrictions on 5 and ¢, and apply (10-2) to a case in which our model roughly speaking
fills out the core of the earth. The estimate for the velocities which we shall obtain is that
corresponding to a calculation with neglect of all small effects, i.e. taking into account
only the large terms in the strong equations. We put

1=% a=1ia,
where a, is the radius of the earth’s core. We then get from (10-2)

4730
wa =

oa,

(10-3)

This estimate is larger by a factor 25 than one obtained in a numerical treatment of the
problem of the dynamo in the earth’s core by Bullard & Gellmann (1954), who give
v,(max.) = 187/va, for the maximum value of the radial component of velocity. (See
equation (58) on p. 271 of their paper. Note that Bullard & Gellmann use unrationalized
e.m.u., so that we have to put 47« —¢ in their formula, that their a is our @, and their
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V~170.) It is worth noting that the velocity pattern treated by Bullard & Gellmann is quite
different from that of our model.

If one takes ¢ = 3 X 1075 e.m.u. (Bullard & Gellmann 1954) and a, = 3 X 108cm for the
radius of the earth’s core, then equation (10-3) gives wa = 0-5 cmsec™!. This is larger by
about an order of magnitude than the velocity at which the non-dipole field drifts westward
with respect to the earth’s mantle, this being the only velocity in the earth’s core which can
be measured at present.

11. Discussion
(a) Conditions for dynamo action

- We have shown that our two-rotator model drawn in figure 1 can act as a dynamo if
7 and { are small, and can give rise to a magnetic field outside the conductor (see §9);
(7=2a/R, {=2(|R,|+|Ry|)/M). The only important conditions for dynamo action to
be possible were that the angular velocities should be high enough (see (8-4), (8:20), (10-3)),
and that the orientations of the axes of rotation should satisfy (10-1), which is satisfied by
about half of the possible relative orientations.

It should be emphasized that dynamo action has been proved to be possible for finite
~ values of 7 and {, and that it is nof necessary to go to the limit 7 = 0 and { = 0 for our proof
to be valid. However, our calculations are not precise enough to give upper bounds below
which 7 and { must lie if dynamo action is to be possible with certainty. What happens
when 7 and { are not small, we cannot say; however, there is no obvious reason to suppose
that our model cannot act as a dynamo when 7 is close to 1, and { close to 4, the upper limits
permitted by the geometry. The requirement that # and { be small is merely a convenient
mathematical device for making the equations tractable.

(b) Physical significance of the model, and the relation to the model of Bullard & Gellmann

- Our model cannot have any direct application to movements in the core of the earth
because it makes no attempt to satisfy the equations of motion. All it does is to provide an
existence theorem that steady dynamos in a conducting sphere are possible in principle.
Nevertheless, it is interesting that the velocities we have estimated with our dynamo differ
by no more than an order of magnitude from those obtained by Bullard & Gellmann (1954)
(B.-G.) for quite a different system of motions which might well be a fairly good representa-
tion of what happens in the earth’s core; their velocity estimate agrees in order of
magnitude with what is observed in the westward drift (Bullard ef al. 1950).

It is interesting to compare in some detail the model discussed in this paper with that
treated by B.~G. They too discussed motions in a sphere of conducting fluid. The
velocity pattern of their model is shown in figure 11 of their paper; it consists, roughly
speaking, of four eddies whose centres lie on the equator, and whose angular velocity
vectors point alternately from north to south and south to north. Superimposed on
these eddies, there is a non-uniform rotation of the whole fluid about the  north-
south axis. Compared with the model described in this paper, that of B.-~G. has one
advantage and one disadvantage. The advantage is that the B.—G. model probably
bears a much better resemblance to what goes on in the core of the earth than does
our model. The disadvantage of the B.-G. model is that it was not possible to give a

72-3
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mathematically satisfactory demonstration of its ability to act as a dynamo, whereas the
proof given for our model is rigorous.
The model described in this paper differs from that treated by B.~G. on three points:
(1) The non-uniform rotation of B.—G. has no counterpart in our model.
(2) B.—G. use four eddies, whereas we have used only two.
(3) The mathematical representation of the fields and velocities are different.
We next consider these points in detail.

Point (1)

Before the work of B.—-G., the non-uniform rotation was thought to be an essential
component of a dynamo consisting of motions in a fluid sphere. This hypothesis was not
borne out by their results. According to table 4 of their paper, a gradual increase
of the velocity in the non-uniform rotation from zero to one hundred times that in the
eddies reduces the critical eddy velocities by less than a factor 2. Moreover, not only does
the non-uniform rotation fail to be of any significant help in the working of their dynamo,
it can actually be a hindrance, because it is apparently possible to show that if the ratio of
its velocity to that of the eddies tends to infinity, then no dynamo is possible (Bullard, private
communication).

These remarks should not be taken to imply that the non-uniform rotation is of no physical
importance. There are good reasons for supposing that it exists, and moreover, it may well
be essential to explain the westward drift of the non-dipole field (Bullard ef al. 1950). But
in the basic process of self-excitation of the B.—G. dynamo, the non-uniform rotation plays
no important role. The fact that it is present in the B.-G. model and absent from ours is
. therefore of no great significance. '

Point (2)

Since the B.-G. dynamo has been shown, within their approximations, to work without
the non-uniform rotation of the whole fluid sphere, i.e. with the eddies alone, the essential
physical difference between their model and ours is in the number of eddies. That the
characteristic velocity obtained in § 10 of this paper is so much larger than that of B.-G. is
probably largely due to our eddies being somewhat smaller than theirs. A point to note is
that the B.-G. ‘eddies’ are not simply rigid body rotations like ours, but contain com-
ponents of velocities perpendicular to their equatorial planes; however, it is likely that much
the same effect could be achieved by four rigid eddies whose axes are slightly tilted out of
the north-south direction.

Point (3)

The difference between the mathematical representations of the velocities and fields in this
paper and that of B.—G. is responsible for the fact that our treatment is rigorous, whereas
B.—G. had to use infinite series cut off without justification. Our representation is the more
flexible of the two; it allows us to vary freely and independently the radii of the eddies and
their position in the large sphere of conducting fluid. It was just these two degrees of
freedom (represented by the parameters 7 and {) which lay at the base of our treatment.
There was no corresponding freedom in the treatment of B.-G.
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(¢) Undesirable physical features of the model

Our model contains some features which are physically improbable; these are the
requirements that the two rotators should have the same angular velocity and radius, and
that they should have sharp surfaces.

The requirements of equal angular velocities and radii are of no consequence, because
a re-examination of the argument of § 8 shows that if the two rotators were given different
radii ¢ and b, and different angular velocities w, and wy (we may assume w,w;> 0 without
loss of generality), then all that happens is that ¥2 in (8-12) has to be redefined to be

x2=[(040%) (0pb°0) (2¢/R)* (2b/R)*/407] 7,

the definition of P, @, p and ¢ remaining unchanged. It follows that our conclusions about
the conditions for dynamo action and the possibility of generating a field outside the con-
ductor remain unaffected; the result (10-3) continues to be a reasonable estimate of the
velocities required.

The sharp surfaces of the rotators are more serious. To speculate on the possible effect
of a diffuse surface, let us recall that the properties of rotating conductors in magnetic
fields entered into the argument only in two essential ways: we have used, in the first place,
the ability of such a rotator to produce an induced magnetic field of unlimited magnitude
from an applied magnetic field with axial symmetry, and, in the second place, the saturation
effect which limits the induced field when the applied field does not have axial symmetry
(see §4). A diffuse edge is unlikely to affect the ability to produce an unlimited field from
an axially symmetric one (Herzenberg & Lowes 1957). However, the effect of a diffuse
edge on the saturation effect for a transverse applied field is an open question (it was shown
in the paper just cited that the induced field near an accelerating rotator in a magnetic field
perpendicular to the axis can be seriously affected by a diffuse edge).

(d) Essential features of the mechanism

Three different physical processes enter into the working of our model.

(1) The direct interaction of the two rotators through the magnetic fields associated
with what we have called the strong coefficients a and 4. (By direct interaction we mean
one that does not involve the conductor surface.)

(2) The direct interaction through the weak a’s and 4’s.

(3) The interaction with the surface of the conductor.

We have chosen the parameters so that process (1) should be predominant and provide
most of the interaction; the physical meaning of the most important condition for dynamo
action (i.e. (8:19a)) is just that the feedback due to this mechanism should be regenerative.

Processes (2) and (3) contribute little to the magnitude of the interaction, but are,
nevertheless, very important because they enter into the second condition (8:195) for
dynamo action in an essential way and not only as small correction terms. This comes as
a surprise, somewhat mitigated by the fact that if one chooses, as we have done, the para-
meters 7 and { so that surface interaction predominates over coupling through the ‘weak’
fields, then the second dynamo condition is almost automatically satisfied. It is impossible
to say whether the importance of the small effects is a peculiar feature of our model, or more
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general. Nevertheless, its importance in our case does suggest that it might be dangerous
to treat the dynamo problem with series which are cut off arbitrarily.

Our choice of the parameters so that process (3) should predominate over process (2)
was somewhat arbitrary, and by making ({/7) small we could have had it the other way.
The reason for our choice was mathematical simplicity. Until the alternative choice has
been worked out, it will be impossible to say whether the boundedness of the conductor in
which the motions take place is an essential feature of dynamos in a continuous fluid, or
whether dynamos are also possible when the influence of the conductor surface is negligible.

(¢) Possibility of a dynamo with a single rotator

The importance of surface interaction in our model suggests the possibility of a dynamo
consisting of a single rotator in a bounded conductor, the feedback being due to reflexion
from the surface. If this were possible, then a single convection cell in the core of the earth
might be able to act as a dynamo. It should be possible to treat this problem by methods
similar to those used here.

(The case of a spherical rotator concentrically placed within a spherical shell has been
treated by Bullard (1949) and found not to give dynamo action. However, this case is
rather special because one can show from the results in § 5 that the field reflected from the
boundary cannot have the form (4570) necessary for amplification by the rotator; it would
certainly be necessary to place the rotator excentrically.)

(f) The appearance of the magnetic field

It is not difficult to form a picture of the field when <1 and {<1. The induced field at
each rotator is then much stronger than the applied field, so that one gets two islands of
strong field at the rotators, and very little in between. Moreover, the only field components
which are important in the islands will be (4’720) and (B’T20) (because the coefficients
are of the same order (see §8 and (7:26)). Therefore in each island, the magnetic field is
nearly axially symmetric, and points along parallels of latitude in opposite directions on
opposite sides of the equator of the rotator belonging to the island.

12. CONCLUSION

It is possible for a model consisting of two steadily rotating solid conducting: spheres
embedded in a region of solid conducting material bounded by a sphere to act as a dynamo
producing a magnetic field outside the conductor. About half of the possible configurations
can act as dynamos if (i) the velocities are suitably adjusted, (ii) the radii of the rotating
spheres are small compared with the distance between their centres, and (iii) the distances
of the rotating spheres from the centre of the conductor in which they are embedded are
small compared with its radius.

I am indebted to the CERN Theoretical Division and the Institute for Theoretical
Physics at Copenhagen for their hospitality while this work was done. I am grateful to
Sir Edward Bullard, F.R.S., and Dr F. J. Lowes, who read the manuscript, for a consider-
able number of helpful comments.
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